Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(12): pgad349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047041

RESUMO

Spirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) and Lyme disease pathogen Borreliella burgdorferi (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. In Td, Lal is unnecessary for hook assembly but is required for motility, presumably due to the stabilizing effect of the cross-link. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal cross-linked peptides in recombinant and in vivo-derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp. As was observed with Td, a mutant strain of Bb unable to form the cross-link has greatly impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans FlgE also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveal that the Lal cross-link is a conserved and necessary posttranslational modification across the spirochete phylum and may thus represent an effective target for the development of spirochete-specific antimicrobials.

2.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398457

RESUMO

Spirochete bacteria cause Lyme disease, leptospirosis, syphilis and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) catalyzes the formation of covalent lysinoalanine (Lal) crosslinks between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. Although not necessary for hook assembly, Lal is required for motility of Td, presumably due to the stabilizing effect of the crosslink. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal crosslinked peptides in recombinant and in vivo -derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp.. Like with Td, a mutant strain of the Lyme disease pathogen Borreliella burgdorferi unable to form the crosslink has impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveals that the Lal crosslink is a conserved and necessary post-translational modification across the spirochete phylum and may thus represent an effective target for spirochete-specific antimicrobials. Significance Statement: The phylum Spirochaetota contains bacterial pathogens responsible for a variety of diseases, including Lyme disease, syphilis, periodontal disease, and leptospirosis. Motility of these pathogens is a major virulence factor that contributes to infectivity and host colonization. The oral pathogen Treponema denticola produces a post-translational modification (PTM) in the form of a lysinoalanine (Lal) crosslink between neighboring subunits of the flagellar hook protein FlgE. Herein, we demonstrate that representative spirochetes species across the phylum all form Lal in their flagellar hooks. T. denticola and B. burgdorferi cells incapable of forming the crosslink are non-motile, thereby establishing the general role of the Lal PTM in the unusual type of flagellar motility evolved by spirochetes.

3.
Nat Struct Mol Biol ; 27(11): 1041-1047, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895555

RESUMO

The bacterial flagellar motor can rotate in counterclockwise (CCW) or clockwise (CW) senses, and transitions are controlled by the phosphorylated form of the response regulator CheY (CheY-P). To dissect the mechanism underlying flagellar rotational switching, we use Borrelia burgdorferi as a model system to determine high-resolution in situ motor structures in cheX and cheY3 mutants, in which motors are locked in either CCW or CW rotation. The structures showed that CheY3-P interacts directly with a switch protein, FliM, inducing a major remodeling of another switch protein, FliG2, and altering its interaction with the torque generator. Our findings lead to a model in which the torque generator rotates in response to an inward flow of H+ driven by the proton motive force, and conformational changes in FliG2 driven by CheY3-P allow the switch complex to interact with opposite sides of the rotating torque generator, facilitating rotational switching.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Flagelos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Borrelia burgdorferi/química , Borrelia burgdorferi/ultraestrutura , Microscopia Crioeletrônica , Flagelos/química , Flagelos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Força Próton-Motriz , Rotação
4.
Nat Chem Biol ; 15(10): 959-965, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406373

RESUMO

The flagellar hook protein FlgE from spirochaete bacteria self-catalyzes the formation of an unusual inter-subunit lysinoalanine (Lal) crosslink that is critical for cell motility. Unlike other known examples of Lal biosynthesis, conserved cysteine and lysine residues in FlgE spontaneously react to form Lal without the involvement of additional enzymes. Oligomerization of FlgE via its D0 and Dc domains drives assembly of the crosslinking site at the D1-D2 domain interface. Structures of the FlgED2 domain, dehydroalanine (DHA) intermediate and Lal crosslinked FlgE subunits reveal successive snapshots of the reaction. Cys178 flips from a buried configuration to release hydrogen sulfide (H2S/HS-) and produce DHA. Interface residues provide hydrogen bonds to anchor the active site, facilitate ß-elimination of Cys178 and polarize the peptide backbone to activate DHA for reaction with Lys165. Cysteine-reactive molecules accelerate DHA formation, whereas nucleophiles can intercept the DHA intermediate, thereby indicating a potential for Lal crosslink inhibitors to combat spirochaetal diseases.


Assuntos
Flagelos/fisiologia , Lisinoalanina/química , Lisinoalanina/metabolismo , Treponema denticola/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Ácido Ditionitrobenzoico/farmacologia , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica
5.
PLoS One ; 12(9): e0184648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898274

RESUMO

Tapping mode atomic force microscopy (AFM) in solution was used to analyze the role of the internally located periplasmic flagella (PFs) of the Lyme disease spirochete Borrelia burgdorferi in withstanding externally applied cellular stresses. By systematically imaging immobilized spirochetes with increasing tapping forces, we found that mutants that lack PFs are more readily compressed and damaged by the imaging process compared to wild-type cells. This finding suggest that the PFs, aside from being essential for motility and involved in cell shape, play a cytoskeletal role in dissipating energy and maintaining cellular integrity in the presence of external stress.


Assuntos
Borrelia/metabolismo , Flagelos/metabolismo , Estresse Fisiológico , Borrelia/genética , Borrelia/ultraestrutura , Flagelos/genética , Flagelos/ultraestrutura , Movimento , Mutação , Estresse Mecânico
6.
Nat Microbiol ; 1(10): 16134, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27670115

RESUMO

Spirochaetes are bacteria responsible for several serious diseases, including Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum) and leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)(1). These spirochaetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochaete flagella (periplasmic flagella) reside and rotate within the periplasmic space(2-11). The universal joint or hook that links the rotary motor to the filament is composed of ∼120-130 FlgE proteins, which in spirochaetes form an unusually stable, high-molecular-weight complex(9,12-17). In other bacteria, the hook can be readily dissociated by treatments such as heat(18). In contrast, spirochaete hooks are resistant to these treatments, and several lines of evidence indicate that the high-molecular-weight complex is the consequence of covalent crosslinking(12,13,17). Here, we show that T. denticola FlgE self-catalyses an interpeptide crosslinking reaction between conserved lysine and cysteine, resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine crosslinks are not needed for flagellar assembly, but they are required for cell motility and hence infection. The self-catalytic nature of FlgE crosslinking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochaetes.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/química , Lisinoalanina/metabolismo , Spirochaeta/metabolismo , Proteínas de Bactérias/química , Biocatálise , Borrelia burgdorferi/metabolismo , Flagelos/fisiologia , Lisinoalanina/química , Movimento , Spirochaeta/patogenicidade , Treponema denticola/metabolismo
7.
Mol Microbiol ; 101(3): 457-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27113476

RESUMO

Leptospira are unique among bacteria based on their helical cell morphology with hook-shaped ends and the presence of periplasmic flagella (PF) with pronounced spontaneous supercoiling. The factors that provoke such supercoiling, as well as the role that PF coiling plays in generating the characteristic hook-end cell morphology and motility, have not been elucidated. We have now identified an abundant protein from the pathogen L. interrogans, exposed on the PF surface, and named it Flagellar-coiling protein A (FcpA). The gene encoding FcpA is highly conserved among Leptospira and was not found in other bacteria. fcpA(-) mutants, obtained from clinical isolates or by allelic exchange, had relatively straight, smaller-diameter PF, and were not able to produce translational motility. These mutants lost their ability to cause disease in the standard hamster model of leptospirosis. Complementation of fcpA restored the wild-type morphology, motility and virulence phenotypes. In summary, we identified a novel Leptospira 36-kDa protein, the main component of the spirochete's PF sheath, and a key determinant of the flagella's coiled structure. FcpA is essential for bacterial translational motility and to enable the spirochete to penetrate the host, traverse tissue barriers, disseminate to cause systemic infection and reach target organs.


Assuntos
Flagelos/fisiologia , Leptospira/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cricetinae , Cães , Flagelos/genética , Flagelos/metabolismo , Flagelina/genética , Flagelina/metabolismo , Teste de Complementação Genética , Leptospira/genética , Leptospira/metabolismo , Leptospira/patogenicidade , Leptospirose/microbiologia , Células Madin Darby de Rim Canino , Masculino , Mesocricetus , Mutação , Periplasma/metabolismo , Elementos Estruturais de Proteínas , Virulência
8.
J Bacteriol ; 198(4): 664-72, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644432

RESUMO

UNLABELLED: The Lyme disease spirochete Borrelia burgdorferi has five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis of B. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr of Escherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor of Rhodobacter sphaeroides. An isogenic mutant of BB0569 constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis of B. burgdorferi mcp mutants shows that inactivation of either mcp2 or mcp3 reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis of B. burgdorferi is unique and different from the Escherichia coli and Salmonella enterica paradigm. IMPORTANCE: Spirochete chemotaxis differs substantially from the Escherichia coli and Salmonella enterica paradigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years, Borrelia burgdorferi, the causative agent of Lyme disease, has been used as a model organism to understand spirochete chemotaxis and its role in infectious processes of the disease. In this report, BB0569, a hypothetical protein of B. burgdorferi, has been investigated by using an approach of genetic, biochemistry, and cryo-electron tomography analyses. The results indicate that BB0569 has a distinct role in chemotaxis that may be unique to spirochetes and represents a novel paradigm.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Quimiotaxia , Doença de Lyme/microbiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência
9.
PLoS One ; 9(5): e98338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859001

RESUMO

The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Flagelos/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Flagelos/genética , Doença de Lyme/genética , Doença de Lyme/metabolismo , Complexos Multiproteicos/genética , Mutação , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
10.
Proc Natl Acad Sci U S A ; 110(35): 14390-5, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940315

RESUMO

Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete Borrelia burgdorferi. In this study, we genetically trapped intermediates in flagellar assembly and determined the 3D structures of the intermediates to 4-nm resolution by cryoelectron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves as both a gateway and a template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly on completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryoelectron tomography and mutational analysis thus combine synergistically to provide a unique structural blueprint of the assembly process of this intricate molecular machine in intact cells.


Assuntos
Borrelia burgdorferi/metabolismo , Flagelos/metabolismo , Tomografia/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Mutação , Conformação Proteica
11.
Infect Immun ; 81(6): 2012-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529620

RESUMO

The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/microbiologia , Movimento/fisiologia , Animais , Borrelia burgdorferi/citologia , Borrelia burgdorferi/genética , Flagelina/genética , Flagelina/metabolismo , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Mutação , Ninfa/microbiologia
12.
Appl Environ Microbiol ; 78(23): 8467-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001652

RESUMO

We have developed a capillary tube assay in combination with real-time PCR to quantitate the number of chemoattracted Leptospira cells. We identified Tween 80, glucose, sucrose, and pyruvate as attractants for Leptospira cells; amino acids and vitamin B(12) were found to be nonchemotactic or weakly chemotactic. This assay has the general applicability to further our understanding of leptospiral chemotaxis.


Assuntos
Quimiotaxia , Leptospira/fisiologia , Carga Bacteriana , Fatores Quimiotáticos/análise , Leptospira/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real
13.
Annu Rev Microbiol ; 66: 349-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994496

RESUMO

Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.


Assuntos
Borrelia burgdorferi/fisiologia , Quimiotaxia , Locomoção , Flagelos/fisiologia
14.
Mol Microbiol ; 85(4): 782-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22780444

RESUMO

In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW(1) , cheW(2) and cheW(3) ). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW(1) and cheW(3) genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW(1) and CheW(3) are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW(1) and cheW(3) , cheW(2) is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW(1) and CheW(3) interact with CheA(2) whereas CheW(2) binds to CheA(1) . Collectively, our results indicate that CheW(1) and CheW(3) are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Quimiotaxia , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Tomografia com Microscopia Eletrônica , Técnicas de Inativação de Genes , Imunoprecipitação , Locomoção , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
15.
Mol Microbiol ; 82(4): 851-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999436

RESUMO

The Lyme disease spirochete Borrelia burgdorferi lacks the transcriptional cascade control of flagellar protein synthesis common to other bacteria. Instead, it relies on a post-transcriptional mechanism to control its flagellar synthesis. The underlying mechanism of this control remains elusive. A recent study reported that the increased level of BB0184 (CsrA(Bb); a homologue of carbon storage regulator A) substantially inhibited the accumulation of FlaB, the major flagellin protein of B. burgdorferi. In this report, we deciphered the regulatory role of CsrA(Bb) on FlaB synthesis and the mechanism involved by analysing two mutants, csrA(Bb)(-) (a deletion mutant of csrA(Bb)) and csrA(Bb)(+) (a mutant conditionally overexpressing csrA(Bb)). We found that FlaB accumulation was significantly inhibited in csrA(Bb)(+) but was substantially increased in csrA(Bb)(-) . In contrast, the levels of other flagellar proteins remained unchanged. Cryo-electron tomography and immuno-fluorescence microscopic analyses revealed that the altered synthesis of CsrA(Bb) in these two mutants specifically affected flagellar filament length. The leader sequence of flaB transcript contains two conserved CsrA-binding sites, with one of these sites overlapping the Shine-Dalgarno sequence. We found that CsrA(Bb) bound to the flaB transcripts via these two binding sites, and this binding inhibited the synthesis of FlaB at the translational level. Taken together, our results indicate that CsrA(Bb) specifically regulates the periplasmic flagellar synthesis by inhibiting translation initiation of the flaB transcript.


Assuntos
Borrelia burgdorferi/fisiologia , Flagelina/biossíntese , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Regiões 5' não Traduzidas , Sítios de Ligação , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/ultraestrutura , Deleção de Genes , Expressão Gênica , Microscopia de Fluorescência , Mutação , Proteínas Repressoras/genética
16.
J Bacteriol ; 193(13): 3332-41, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531807

RESUMO

Spirochetes have a unique cell structure: These bacteria have internal periplasmic flagella subterminally attached at each cell end. How spirochetes coordinate the rotation of the periplasmic flagella for chemotaxis is poorly understood. In other bacteria, modulation of flagellar rotation is essential for chemotaxis, and phosphorylation-dephosphorylation of the response regulator CheY plays a key role in regulating this rotary motion. The genome of the Lyme disease spirochete Borrelia burgdorferi contains multiple homologues of chemotaxis genes, including three copies of cheY, referred to as cheY1, cheY2, and cheY3. To investigate the function of these genes, we targeted them separately or in combination by allelic exchange mutagenesis. Whereas wild-type cells ran, paused (flexed), and reversed, cells of all single, double, and triple mutants that contained an inactivated cheY3 gene constantly ran. Capillary tube chemotaxis assays indicated that only those strains with a mutation in cheY3 were deficient in chemotaxis, and cheY3 complementation restored chemotactic ability. In vitro phosphorylation assays indicated that CheY3 was more efficiently phosphorylated by CheA2 than by CheA1, and the CheY3-P intermediate generated was considerably more stable than the CheY-P proteins found in most other bacteria. The results point toward CheY3 being the key response regulator essential for chemotaxis in B. burgdorferi. In addition, the stability of CheY3-P may be critical for coordination of the rotation of the periplasmic flagella.


Assuntos
Borrelia burgdorferi/fisiologia , Quimiotaxia , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Transativadores/metabolismo , Sequência de Aminoácidos , Borrelia burgdorferi/genética , Flagelos/fisiologia , Deleção de Genes , Teste de Complementação Genética , Locomoção , Dados de Sequência Molecular , Movimento , Fosforilação , Alinhamento de Sequência , Transativadores/genética
17.
J Bacteriol ; 193(10): 2652-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21441520

RESUMO

Green fluorescent protein (GFP) fusions, immunofluorescence microscopy, and cryo-electron tomography revealed that the chemoreceptors of the Lyme disease spirochete Borrelia burgdorferi form long, thin arrays near both cell poles. These arrays are in close proximity to the flagellar motors. This information provides a basis for further understanding motility, chemotaxis, and protein localization in spirochetes.


Assuntos
Proteínas de Bactérias/análise , Borrelia burgdorferi/química , Proteínas Motores Moleculares/análise , Tomografia com Microscopia Eletrônica , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência
18.
J Bacteriol ; 192(10): 2596-603, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20304988

RESUMO

The expression of flagellin genes in most bacteria is typically regulated by the flagellum-specific sigma(28) factor FliA, and an anti-sigma(28) factor, FlgM. However, the regulatory hierarchy in several bacteria that have multiple flagellins is more complex. In these bacteria, the flagellin genes are often transcribed by at least two different sigma factors. The flagellar filament in spirochetes consists of one to three FlaB core proteins and at least one FlaA sheath protein. Here, the genetically amenable bacterium Brachyspira hyodysenteriae was used as a model spirochete to investigate the regulation of its four flagellin genes, flaA, flaB1, flaB2, and flaB3. We found that the flaB1 and flaB2 genes are regulated by sigma(28), whereas the flaA and flaB3 genes are controlled by sigma(70). The analysis of a flagellar motor switch fliG mutant further supported this proposition; in the mutant, the transcription of flaB1 and flaB2 was inhibited, but that of flaA and flaB3 was not. In addition, the continued expression of flaA and flaB3 in the mutant resulted in the formation of incomplete flagellar filaments that were hollow tubes and consisted primarily of FlaA. Finally, our recent studies have shown that each flagellin unit contributes to the stiffness of the periplasmic flagella, and this stiffness directly correlates with motility. The regulatory mechanism identified here should allow spirochetes to change the relative ratio of these flagellin proteins and, concomitantly, vary the stiffness of their flagellar filament.


Assuntos
Proteínas de Bactérias/metabolismo , Brachyspira hyodysenteriae/metabolismo , Flagelina/metabolismo , Spirochaetales/metabolismo , Proteínas de Bactérias/genética , Western Blotting , Brachyspira hyodysenteriae/genética , Brachyspira hyodysenteriae/ultraestrutura , Eletroforese , Flagelos/metabolismo , Flagelos/ultraestrutura , Flagelina/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spirochaetales/genética , Spirochaetales/ultraestrutura
19.
Biophys J ; 96(11): 4409-17, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19486665

RESUMO

The mechanisms that determine bacterial shape are in many ways poorly understood. A prime example is the Lyme disease spirochete, Borrelia burgdorferi (B. burgdorferi), which mechanically couples its motility organelles, helical flagella, to its rod-shaped cell body, producing a striking flat-wave morphology. A mathematical model is developed here that accounts for the elastic coupling of the flagella to the cell cylinder and shows that the flat-wave morphology is in fact a natural consequence of the geometrical and material properties of the components. Observations of purified periplasmic flagella show two flagellar conformations. The mathematical model suggests that the larger waveform flagellum is the more relevant for determining the shape of B. burgdorferi. Optical trapping experiments were used to measure directly the mechanical properties of these spirochetes. These results imply relative stiffnesses of the two components, which confirm the predictions of the model and show that the morphology of B. burgdorferi is completely determined by the elastic properties of the flagella and cell body. This approach is applicable to a variety of other structures in which the shape of the composite system is markedly different from that of the individual components, such as coiled-coil domains in proteins and the eukaryotic axoneme.


Assuntos
Borrelia burgdorferi/citologia , Borrelia burgdorferi/fisiologia , Flagelos/fisiologia , Modelos Biológicos , Algoritmos , Elasticidade , Pinças Ópticas
20.
J Bacteriol ; 191(2): 600-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19011030

RESUMO

Electron cryotomography was used to analyze the structure of the Lyme disease spirochete, Borrelia burgdorferi. This methodology offers a new means for studying the native architecture of bacteria by eliminating the chemical fixing, dehydration, and staining steps of conventional electron microscopy. Using electron cryotomography, we noted that membrane blebs formed at the ends of the cells. These blebs may be precursors to vesicles that are released from cells grown in vivo and in vitro. We found that the periplasmic space of B. burgdorferi was quite narrow (16.0 nm) compared to those of Escherichia coli and Pseudomonas aeruginosa. However, in the vicinity of the periplasmic flagella, this space was considerably wider (42.3 nm). In contrast to previous results, the periplasmic flagella did not form a bundle but rather formed a tight-fitting ribbon that wraps around the protoplasmic cell cylinder in a right-handed sense. We show how the ribbon configuration of the assembled periplasmic flagella is more advantageous than a bundle for both swimming and forming the flat-wave morphology. Previous results indicate that B. burgdorferi motility is dependent on the rotation of the periplasmic flagella in generating backward-moving waves along the length of the cell. This swimming requires that the rotation of the flagella exerts force on the cell cylinder. Accordingly, a ribbon is more beneficial than a bundle, as this configuration allows each periplasmic flagellum to have direct contact with the cell cylinder in order to exert that force, and it minimizes interference between the rotating filaments.


Assuntos
Borrelia burgdorferi/química , Borrelia burgdorferi/fisiologia , Flagelos/química , Doença de Lyme/microbiologia , Periplasma/química , Borrelia burgdorferi/ultraestrutura , Flagelos/fisiologia , Flagelos/ultraestrutura , Humanos , Periplasma/fisiologia , Periplasma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...